skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Romanova, M_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We investigate the origin of photometric variability in the classical T Tauri star TW Hya by comparing light curves obtained by Transiting Exoplanet Survey Satellite (TESS) and ground-based telescopes with light curves created using three-dimensional (3D) magnetohydrodynamic (MHD) simulations. TW Hya is modelled as a rotating star with a dipole magnetic moment, which is slightly tilted about the rotational axis. We observed that for various model parameters, matter accretes in the unstable regime and produces multiple hotspots on the star’s surface, which leads to stochastic-looking light curves similar to the observed ones. Wavelet and Fourier spectra of observed and modelled light curves show multiple quasi-periodic oscillations (QPOs) with quasi-periods from less than 0.1 to 9 d. Models show that variation in the strength and tilt of the dipole magnetosphere leads to different periodograms, where the period of the star may dominate or be hidden. The amplitude of QPOs associated with the stellar period can be smaller than that of other QPOs if the tilt of the dipole magnetosphere is small and when the unstable regime is stronger. In models with small magnetospheres, the short-period QPOs associated with rotation of the inner disc dominate and can be mistaken for a stellar period. We show that longer period (5–9 d) QPOs can be caused by waves forming beyond the corotation radius. 
    more » « less
  2. ABSTRACT We study the evolution of eccentricity and inclination of massive planets in low-density cavities of protoplanetary discs using three-dimensional (3D) simulations. When the planet’s orbit is aligned with the equatorial plane of the disc, the eccentricity increases to high values of 0.7–0.9 due to the resonant interaction with the inner parts of the disc. For planets on inclined orbits, the eccentricity increases due to the Kozai–Lidov mechanism, where the disc acts as an external massive body, which perturbs the planet’s orbit. At small inclination angles, $${\lesssim}30^\circ$$, the resonant interaction with the inner disc strongly contributes to the eccentricity growth, while at larger angles, eccentricity growth is mainly due to the Kozai–Lidov mechanism. We conclude that planets inside low-density cavities tend to acquire high eccentricity if favourable conditions give sufficient time for growth. The final value of the planet’s eccentricity after the disc dispersal depends on the planet’s mass and the properties of the cavity and protoplanetary disc. 
    more » « less
  3. ABSTRACT We carry out hydrodynamical simulations to study the eccentricity growth of a 1–30 Jupiter mass planet located inside the fixed cavity of a protoplanetary disc. The planet exchanges energy and angular momentum with the disc at resonant locations, and its eccentricity grows due to Lindblad resonances. We observe several phases of eccentricity growth where different eccentric Lindblad resonances dominate from 1:3 up to 3:5. The maximum values of eccentricity reached in our simulations are 0.65–0.75. We calculate the eccentricity growth rate for different planet masses and disc parameters and derive analytical dependencies on these parameters. We observe that the growth rate is proportional to both the planet’s mass and the characteristic disc mass for a wide range of parameters. In a separate set of simulations, we derived the width of the 1:3 Lindblad resonance. 
    more » « less
  4. ABSTRACT Spectral and photometric variability of the Classical T Tauri stars RY Tau and SU Aur from 2013 to 2022 is analysed. We find that in SU Aur the H α line’s flux at radial velocity RV  = −50 ± 7  km s−1 varies with a period P = 255 ± 5 d. A similar effect previously discovered in RY Tau is confirmed with these new data: P = 21.6 d at RV  = −95 ± 5  km s. In both stars, the radial velocity of these variations, the period, and the mass of the star turn out to be related by Kepler’s law, suggesting structural features on the disc plane orbiting at radii of 0.2 au in RY Tau and 0.9 au in SU Aur, respectively. Both stars have a large inclination of the accretion disc to the line of sight – so that the line of sight passes through the region of the disc wind. We propose there is an azimuthal asymmetry in the disc wind, presumably in the form of ‘density streams,’ caused by substructures of the accretion disc surface. These streams cannot dissipate until they go beyond the Alfven surface in the disc’s magnetic field. These findings open up the possibility to learn about the structure of the inner accretion disc of CTTS on scales less than 1 au and to reveal the orbital distances related to the planet’s formation. 
    more » « less